Presented in this paper is a solution in series form for the stresses in an infinite elastic solid which contains two rigid spherical inclusions of the same size. The stress field at infinity is assumed to be either hydrostatic tension or uniaxial tension in the direction of the common axis of the inclusions. The solution is based upon the Papkovich-Boussinesq displacement-function approach and makes use of the spherical dipolar harmonics developed by Sternberg and Sadowsky. The problem is closely related to, but turns out to be much more involved than, the corresponding problem of two spherical cavities solved by these authors.

This content is only available via PDF.
You do not currently have access to this content.