An integrated procedure is presented for applying the variational equation of motion to the approximate analysis of nonlinear vibrations of homogeneous and layered plates and shells involving large deflections. The procedure consists of a sequence of variational approximations. The first of these involves an approximation in the thickness direction and yields a system of equations of motion and boundary conditions for the plate or shell. Subsequent variational approximations with respect to the remaining space coordinates and time, wherever needed, lead to a solution to the nonlinear vibration problem. The procedure is illustrated by a study of the nonlinear free vibrations of homogeneous and sandwich cylindrical shells, and it appears to be applicable to still many other homogeneous and composite elastic systems.

This content is only available via PDF.
You do not currently have access to this content.