The differential equations governing the deformation of shells of revolution of uniform thickness subjected to axisymmetric self-equilibrating edge loads are transformed into a form suitable for asymptotic integration. Asymptotic solutions are obtained for all sufficiently thin shells that possess a smooth meridian curve and that are spherical in the neighborhood of the apex. For design use, influence coefficients are derived and presented graphically as functions of the transformed independent variable ξ. The variation of ξ with the meridional tangent angle φ is given analytically and graphically for several common meridian curves—the parabola, the ellipse, and the sphere.

This content is only available via PDF.
You do not currently have access to this content.