This paper presents a method of analyzing the stress distribution in a deep beam of finite length by superimposing two stress functions. The first stress function is chosen in the form of a trigonometric series which satisfies all but one of the boundary conditions—that of zero normal stress on the ends of the beam. The principle of least work is then used to obtain a second stress function giving the distribution of normal stress on the ends which is left by the first stress function. By superimposing the two solutions, all the boundary conditions are satisfied. Two particular cases of a given type of loading are solved in this way to investigate the stresses in a deep beam and their deviation from the ordinary beam theory. In addition, an approximate solution by the numerical method of finite difference is worked out for one of the two cases. Results from the two methods are compared and discussed. A method of obtaining an exact solution to the problem is given in an Appendix.

This content is only available via PDF.
You do not currently have access to this content.