Assuming narrow grooves and considering inertia effect, an equation for the pressure distribution in a grooved circular step thrust bearing has been derived. A parametric study has been performed to investigate the effects of step and groove geometry on pressure distribution, load capacity and lubricant flow rate. Three arrangements of the bearing surface have been studied and it has been found that the maximum load capacity is obtained by putting grooves only on the step. Inertia significantly affects the load capacity. To get increased load capacity with increase of inertia, the step inner radius should be larger than 0.45 times of the outer radius. For the most enhancement of hydrodynamic load, the groove inclination angle should be 135° with the direction of rotation and the depth should be twice the minimum film thickness.

This content is only available via PDF.
You do not currently have access to this content.