Some hydrogenated amorphous carbon (a-C:H) films have the peculiarity to exhibit coefficients of friction in the millirange, known as “superlow friction”, under inert environments like dry nitrogen or high vacuum. However, this “superlubricity” is only observed for some coatings and sometimes for very short duration. The role of tribofilm in the superlow friction regime observed on various a-C:H films sliding against steel pins has been investigated by performing experiments in ultra-high vacuum and hydrogen ambient. Tribofilm build-up appears to be controlled by interactions with oxide layers. Then, evolutions of the tribofilm will depend both on the composition of a-C:H film and on interactions with environment, through tribochemical reactions. Furthermore, the mechanical properties of the films are correlated with the achievement of superlow friction. All these results suggest that surface rheological properties are of critical importance in reaching superlow friction regime with a-C:H films.

This content is only available via PDF.
You do not currently have access to this content.