The no-slip boundary condition is part of the foundation of traditional lubrication theory. It states that fluid adjacent to a solid boundary has zero velocity relative to the solid surface. For most practical applications, the no-slip boundary condition is a good model for predicting fluid behavior. However, recent experimental research has found that for certain engineered surfaces the no-slip boundary condition is not valid. Measured velocity profiles show that slip occurs at the interface. In the present study, the effect of an engineered slip/no-slip surface on journal bearing performance is examined. A heterogeneous pattern, in which slip occurs in certain regions and is absent in others, is applied to the bearing surface. Fluid slip is assumed to occur according to the Navier relation. Analysis is performed numerically using a mass conserving algorithm for the solution of the Reynolds equation. Load carrying capacity and friction force are evaluated. It is found that judicious application of slip to a journal bearing’s surface can lead to improved bearing performance.

This content is only available via PDF.
You do not currently have access to this content.