In multi-layered solids, an acoustic wave is partially reflected and partially transmitted at boundaries, which renders a too complex wave pattern to be predicted with analytical models. A Finite Element Method (FEM) based numerical model is developed to predict the acoustic wave propagation in multi-layered solids, where an ANSYS acoustic fluid element is adopted to solve this problem. The model is applied to study the pump-probe transient reflectivity measurements on Heat Assisted Magnetic Recording (HAMR) media, where the thermo-elastic waves are isolated and then subtracted from the composite reflectivity change measurement. As a result, the reflectivity change caused by the thermal decay is separated from the thermo-elastic waves, allowing a more accurate prediction and measurement of the thermal properties of HAMR media.

This content is only available via PDF.
You do not currently have access to this content.