The dynamic response of an axially translating continuum subjected to the combined effects of a pair of spring supported frictional guides and axial acceleration is investigated; such systems are both non-conservative and gyroscopic. The continuum is modeled as a tensioned string translating between two rigid supports with a time dependent velocity profile. The equations of motion are derived with the extended Hamilton’s principle and discretized in the space domain with the finite element method. The stability of the system is analyzed with the Floquet theory for cases where the transport velocity is a periodic function of time. Direct time integration using an adaptive step Runge-Kutta algorithm is used to verify the results of the Floquet theory. Results are given in the form of time history diagrams and instability point grids for different sets of parameters such as the location of the stationary load, the stiffness of the elastic support, and the values of initial tension. This work showed that presence of friction adversely affects stability, but using non-zero spring stiffness on the guiding force has a stabilizing effect.

This content is only available via PDF.
You do not currently have access to this content.