In this paper we present a theoretical investigation of the stability and the dynamics of the non-linear behavior of a slider at very low head media spacing. A single DOF head disk interface (HDI) model, with constant air bearing stiffness and damping has been used to study the effect of disk waviness on the nonlinear slider dynamics in the presence of intermolecular and electrostatic forces. A variational approach based on the principle of least action was used to derive the equations of motion of the slider. Further, a stability criteria was derived that helped to better understand the instabilities that appear in slider when the slider is flying in close proximity to the disk surface. Due to extremely nonlinear nature of the interaction between the slider and the disk, we observed some strange features of the motion of the slider. In particular the effects of the nonlinear interaction force, air bearing stiffness and damping on the instabilities of the periodic motions of the slider are discussed in detail. We found that the branch associated to the disk waviness frequencies larger than the resonance frequency is always stable and the branch associated to the disk waviness frequencies smaller than the resonance frequency exhibits two stable domains and one unstable domain. This analysis was further extended to include the nonlinear nature of air bearing stiffness and damping as well as contact at the HDI.

This content is only available via PDF.
You do not currently have access to this content.