A thermal elasto-plastic contact model is developed in this paper to investigate the influences of steady-state frictional heating on the contact performance of surface asperities and subsurface stress fields. This model takes into account the asperity distortion caused by temperature variation in a tribological process, micro plastic flow of surface asperities, and the coupled thermo-elasto-plastic behavior of materials, with and without considering the strain-hardening property of the materials. The model is verified through the contact analysis between a rigid, isolated cylinder and a plane. Furthermore, the thermal effects on the contact pressure, real contact area, and average gap of rough surfaces in contact with different frictional coefficients and heat inputs under the thermal elasto-plastic contact conditions are studied.

This content is only available via PDF.
You do not currently have access to this content.