RF MEMS switch lifetimes are limited by stiction of the moving components and degradation of the metal to metal contact points during cycling. Currently, maximum switch lifetimes are around 10 to 25 billion cycles. Past experimentation has shown that some stiction problems can be overcome by carefully controlling the operating parameters, but problems at the contact points remain [1]. It is believed that by developing a set of tribological design rules which limit the factors leading to catastrophic failure, switches can operate in excess of 100 billion cycles. Recent research has quantified the reliability and durability of gold contact points on RF MEMS switches as a function of current [2]. Most experimentation on RF MEMS switches has focused on controlling the operating parameters such as current, voltage, electrode materials, contact area, switching mode and force; however, limited work has been performed on a single device type in multiple environmentally controlled testing conditions such as vacuum, cryogenic temperatures, etc. This presentation will discuss performance of the wiSpry RF MEMS switch focusing on quantification of device reliability and failure mechanisms under various atmospheric and temperature conditions. Environmental testing conditions include switching in open air, vacuum and inert gasses, in temperatures ranging from 294 K to 4 K.

This content is only available via PDF.
You do not currently have access to this content.