Fretting contacts in the partial slip regime are simulated by a finite element model of a rigid cylinder on an elastic-crystal viscoplastic half-space. The half-space is modeled as duplex Ti-6Al-4V, a polycrystalline metal alloy consisting of equiaxed primary alpha grains and secondary lamellar alpha+beta grains. Various realistic 3-D crystallographic textures are considered. The deformation fields generated by fretting are quantified in terms of cumulative effective plastic strain distributions and plastic strain maps. The results clearly demonstrate the importance of the various sources of microstructural heterogeneity in the surface layers. The main sources of microstructural heterogeneity include the distribution of phases, slip system strength anisotropy, and crystallographic texture. In basal textured materials with fretting on the edge, the plastic strain is more evenly distributed in the subsurface regions than in other textured cases. This is explained by the greater number of grains able to deform by soft slip modes and the symmetry of this type of texture relative to the fretting orientation. Transverse and basal/transverse textures result in more heterogeneously-distributed plastic strain with strain often concentrated in narrow vein-like structures with maximum accumulation near alpha/alpha+beta grain boundaries. Elastic shakedown is more difficult to achieve in the later case. Ratcheting is the primary mechanism for cyclic plastic strain accumulation.

This content is only available via PDF.
You do not currently have access to this content.