Premature failure of mechanical seal components is often a result of the elevated temperatures at the sealing interface that arise due to frictional heating. The Heat Sink Mechanical Seal (HSS) is a new approach to interface cooling in which a micro heat sink is constructed within millimeters of the sealing interface. Coolant circulated through the highly structured pin fin region carries away the generated heat. This work investigates the impact of interface cooling on carbon wear rates for a tungsten carbide (WC) and carbon graphite material pair. Experiments are performed using a thrust washer rotary tribometer to simulate a mechanical seal operating in dry running conditions within and in excess of the PV limit for the material pair (17.5 MPa*m/s or 500,000 psi*ft/min). Results show stable operation of sealing components in harsh operating conditions as well as the potential to reduce the occurrence of thermally induced wear and failure.

This content is only available via PDF.
You do not currently have access to this content.