Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-1 of 1
Three-dimensional models
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. WIND2003, ASME 2003 Wind Energy Symposium, 1-10, January 6–9, 2003
Paper No: WIND2003-349
Abstract
The LS(1)-0417MOD airfoil model was tested in The Ohio State University’s 3×5 wind tunnel both clean and with the application of leading edge grit roughness and with vortex generators. The tests were conducted in both two-dimensional and three-dimensional model configurations and for steady state and unsteady flow conditions. Pressure data were obtained from six spanwise stations. The results showed that the application of the grit roughness reduces the maximum lift coefficients in all configurations. Unsteady maximum lift coefficients were always higher than those for steady state and had, generally, large hysteresis loops. In the case of the unsteady flow however, the hysteresis loops were smaller for the three dimensional (wing) flows. The smallest hysteresis loops were found at the tip spanwise station. The application of the vortex generators at certain chordwise locations reduced the hysteresis loops and increased the maximum lift coefficient, especially in the three dimensional configuration.