Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-2 of 2
Emissions
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Alternative Materials, Manufacturing Processes, and Structural Designs for Large Wind Turbine Blades
Proc. ASME. WIND2002, ASME 2002 Wind Energy Symposium, 27-39, January 14–17, 2002
Paper No: WIND2002-25
Abstract
As part of the U.S. Department of Energy’s Wind Partnerships for Advanced Component Technologies program, Global Energy Concepts LLC (GEC) has performed a study concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. Constraints to cost-effective scaling-up of the current commercial blade designs and manufacturing methods are identified, including self-gravity loads, transportation, and environmental considerations. A trade-off study is performed to evaluate the incremental changes in blade cost, weight, and stiffness for a wide range of composite materials, fabric types, and manufacturing processes. Fiberglass/carbon hybrid blades are identified as having a promising combination of cost, weight, stiffness and fatigue resistance. Vacuum-assisted resin transfer molding, resin film infusion, and pre-impregnated materials are identified as having benefits in reduced volatile emissions, higher fiber content, and improved laminate quality relative to the baseline wet lay-up process. Alternative structural designs are identified, including jointed configurations to facilitate transportation. Based on the study results, recommendations are developed for further evaluation and testing to verify the predicted material and structural performance.
Proceedings Papers
Proc. ASME. WIND2003, ASME 2003 Wind Energy Symposium, 377-388, January 6–9, 2003
Paper No: WIND2003-1184
Abstract
The interaction between the rotor and the tower wake is an important source of noise for wind turbines with downwind rotors. These noise levels may significantly impact the immediate environment. During rotation the rotor blades encounter periodic changes in flow conditions as a result of the tower presence. Typically turbine towers have a circular or modified circular cross section which significantly modifies the flow in the vicinity of the tower. Upstream, the tower causes the flow to decelerate and, hence, causes a rise in pressure. Because of its bluff shape, the flow separates prematurely from the tower and this tends to create a wide, unsteady, vortical wake. The wake characteristics are dependent on the cross-sectional shape of the tower, its surface properties, the Reynolds number (based on tower diameter and wind velocity) of the flow, and the turbulence level of the incoming flow. The wake modifies the dynamic pressure and the local flow incidence angle as seen by the blades and, hence, modifies the aerodynamic loading of the blade during blade passage. The resulting n per revolution fluctuation in the blade loading (where n is the number of blades) is the source of low frequency but potentially high amplitude sound levels. The WTC Proof of Concept 250 kW (POC) wind turbine has been observed by field personnel to produce low frequency emissions at the National Wind Technology Center (NWTC) site during specific atmospheric conditions. Consequently, WTC is conducting a three-phase program to characterize the low frequency emissions of its two-bladed wind turbines and to develop noise mitigation techniques if needed. This paper summarizes the first phase of this program including recent low-frequency noise measurements conducted on the WTC POC250 kW wind turbine, the wake characteristics of circular towers as they pertain to the blade-wake interaction problem, and techniques to attenuate the sound pressure levels caused by the blade-wake interaction.