Yaw aerodynamics were computed with three codes of different complexity; 1) The 3D Navier Stokes solver Ellipsys3D using 5–8 million grid points; 2) HAWC3D which is a 3D actuator disc model coupled to a blade element model and using 20–30.000 grid points and 3) HAWC, a finite element based aeroelastic code using The Blade Element Momentum (BEM) model for the aerodynamics. Simulations were performed for two experiments. The first is the field rotor measurements on a 100 kW turbine at Risoe where local flow angle (LFA) and local relative velocity (LRV) at one radial station have been measured in a yaw angle interval of ±60°. The other experiment is the NREL measurements on a 10 m rotor in the NASA Ames 80 ft × 120 ft wind tunnel. LFA were measured at five radial stations and data for the 45° yaw case were analyzed. The measured changes in LFA caused by the yawing were used as the main parameter in the comparison with the models. In general a good correlation was found comparing the Ellipsys3D results with the LFA measured on the NREL rotor whereas a systematic underestimation of the amplitude in LFA as function of azimuth was observed for the two other models. This could possibly be ascribed to upwash influence on the measured LFA.

This content is only available via PDF.
You do not currently have access to this content.