This study presents results obtained for three designs of the Northern Power Systems (NPS) 9.2-meter version of the ERS-100 wind turbine rotor blade. The ERS-100 wind turbine rotor blade was designed and developed by TPI composites. The baseline design uses e-glass unidirectional fibers in combination with ±45-degree and random mat layers for the skin and spar cap. This project involves developing structural finite element models of the baseline design and carbon hybrid designs with twist-bend coupling. All designs were evaluated for a unit load condition and two extreme wind conditions. The unit load condition was used to evaluate the static deflection, twist and twist-coupling parameter. Maximum deflections and strains were determined for the extreme wind conditions. Buckling eigenvalues were determined for a tip load condition. The results indicate that carbon fibers can be used to produce twist-coupled designs with comparable deflections, strains and buckling loads.

This content is only available via PDF.
You do not currently have access to this content.