As part of the U.S. Department of Energy’s Wind Partnerships for Advanced Component Technologies program, Global Energy Concepts LLC (GEC) has performed a study concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. Constraints to cost-effective scaling-up of the current commercial blade designs and manufacturing methods are identified, including self-gravity loads, transportation, and environmental considerations. A trade-off study is performed to evaluate the incremental changes in blade cost, weight, and stiffness for a wide range of composite materials, fabric types, and manufacturing processes. Fiberglass/carbon hybrid blades are identified as having a promising combination of cost, weight, stiffness and fatigue resistance. Vacuum-assisted resin transfer molding, resin film infusion, and pre-impregnated materials are identified as having benefits in reduced volatile emissions, higher fiber content, and improved laminate quality relative to the baseline wet lay-up process. Alternative structural designs are identified, including jointed configurations to facilitate transportation. Based on the study results, recommendations are developed for further evaluation and testing to verify the predicted material and structural performance.

This content is only available via PDF.
You do not currently have access to this content.