This paper presents a numerical method for performance predictions of wind turbines immersed into stable, neutral, or unstable atmospheric boundary layer. Tile flowfield around a turbine is described by the Reynolds’ averaged Navier-Stokes equations complemented by the k-ε turbulence model. The density variations are introduced into the momentum equation using the Boussinesq approximation and appropriate buoyancy terms are included into the k and ε equations. An original expression for the closure coefficient related to the buoyancy production term is proposed in order to improve the accuracy of the simulations. The turbine is idealized as actuator disk surface, on which external surficial forces exerted by the turbine blade on the flow are prescribed according to the blade element theory. The resulting mathematical model has been implemented in FLUENT. The results presented in the paper include the power output and wake development under various thermal stratifications of an isolated wind turbine. In stable stratification, the power output is 4% lower than in neutral condition, while in unstable situation, the power is 3% larger. The predicted wake velocity defects are qualitatively in agreement with experimental observations.

This content is only available via PDF.
You do not currently have access to this content.