In terms of efficiency improvement many methods for reducing the blade tip-leakage mass flow rate have been proposed. Some of these methods are based on increasing the flow resistance with aid of geometrical modifications of the blade tip (squealers, winglets, shrouded blades, etc.) whereas other methods take advantage of aerodynamical resistance with passive tip-injection as an example. The objective of this paper is a combination of both methods in order to achieve higher reduction in tip-leakage mass flow rate. In the first part of this work necessary characteristic parameters of modern low pressure turbine blades in aircraft gas turbines are estimated. These parameters are taken into consideration to calculate the range of physical quantities influencing tip-leakage flow. Subsequently a two dimensional flow model is obtained with the so called discharge coefficient as the ratio of the actual tip gap mass flow rate to its highest possible value. The investigations are based on dimensionless calculations. In the end the results obtained from dimensionless 2D CFD-simulations are presented and compared with the analytical results. This leads to conclusions regarding the impact of various parameters on the effectiveness of the passive tip-injection.

This content is only available via PDF.
You do not currently have access to this content.