Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
NARROW
Date
Availability
1-20 of 66
Particulate matter
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. SMASIS2019, ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, V001T02A010, September 9–11, 2019
Paper No: SMASIS2019-5691
Abstract
Abstract Mechanoluminescent-particulate filled composites have been gaining significant interest for light generation, stress visualization, health monitoring, damage sensing and pressure mapping applications. Previous works on stress-dependence of light emission have modeled emission intensity as a function of macroscopic composite stress. While this approach may suffice from an application point of view, the resulting model may not represent the mechanoluminescence phenomenon accurately. This is because in particulate filled elastomer composites, particulate stresses can be significantly different from matrix and macroscopic stresses, especially in composites with moderate and low filler volume fraction. Experimental difficulty in measuring stresses within micron-sized particles necessitate micromechanical models that can connect macroscale measurements to microscale parameters through material properties. Apart from the material properties of the matrix and the particles, the bonding between the two dissimilar materials at their interface influences the stress transfer significantly. Cohesive zone modeling (CZM) approach defines the interface between particles and matrix as a piecewise linear stiffness element with possible degradation of stiffness beyond a certain strain. CZM provides a convenient way to not only predict particulate stress from macroscopic stress, but also to track interface damage and debonding. In this paper, we demonstrate an experimental technique to obtain cohesive zone parameters for mechanoluminescent-particulate filled elastomer composites, utilizing optical microscopy and Digital Image Correlation (DIC). CZM thus obtained can help predict particulate stresses and aid better modeling of the mechanoluminescence phenomenon. The experimental technique can also be easily adopted for other particulate-filled composites.
Proceedings Papers
Proc. ASME. SMASIS2018, Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation, and Control of Adaptive Systems; Integrated System Design and Implementation, V001T01A020, September 10–12, 2018
Paper No: SMASIS2018-8209
Abstract
Static and dynamic properties of six magnetorheological elastomers (MRE) with iron particles volume fraction ranging from 12.5% to 40% were experimentally characterized under shear mode operation. The experiments were designed on the basis of standardized methods defined in ISO-1827 and ISO-4664. The static shear stress-shear strain data obtained under strains up to 30% were used to quantify absolute and relative MR effects of the MREs as functions of magnetic flux density in the 0 to 450 mT range. The MRE specimen with highest iron particles fraction and a softening agent revealed greatest MR effect. The dynamic characteristics of this MRE specimen were then evaluated under harmonic excitations in the 0.1–50 Hz frequency range with shear strain amplitude and magnetic flux density ranging from 2.5 to 20%, and 0 to 450 mT, respectively. The data were then utilized to evaluate elastic and loss shear moduli of the specimen.
Proceedings Papers
Proc. ASME. SMASIS2018, Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation, and Control of Adaptive Systems; Integrated System Design and Implementation, V001T03A008, September 10–12, 2018
Paper No: SMASIS2018-8015
Abstract
Artificial and synthetic skins are widely used in the medical field; used in applications ranging from skin grafts to suture training pads. There is a growing need for artificial skins with tunable properties. However, current artificial skins do not take into account the variability of mechanical properties between individual humans as well as the age-dependent properties of human skin. Furthermore, there has been little development in artificial skins based on these properties. Thus, the primary purpose of this research is to develop variable stiffness artificial skin samples using magnetorheological elastomers (MREs) whose properties that can be controlled using external magnetic fields. In this study, multiple MRE skin samples were fabricated with varying filler particle volume contents. Using a precision dynamic mechanical analyzer, a series of indenting experiments were performed on the samples to characterize their mechanical properties. The samples were tested using a spherical indenter that indented a total depth of 1 mm with a speed of 0.01 mm/s and unloaded at the same rate. The results show that the modulus or stiffness increases significantly as the iron percent (w/w) in the sample increases. Additionally, the stiffness of the sample increases proportional to the intensity of the applied external magnetic field. To assess the MRE samples’ variability of properties, the testing results were compared with in vivo human skin testing data. The results show the MRE samples are feasible to represent the age-dependent stiffness demonstrated in in vivo human skin testing. The MRE materials studied will be further studied as a variable-stiffness skin model in medical devices, such as radial pulse simulators.
Proceedings Papers
Proc. ASME. SMASIS2017, Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies, V001T01A015, September 18–20, 2017
Paper No: SMASIS2017-3988
Abstract
In this study, we demonstrate the electric and magnetic manipulation of nanoscale M-type Barium Hexaferrite (nBF) in polydimethylsiloxane (PDMS) to engineer a multifunctional nanocomposite with improved dielectric and magnetic properties. First, we synthesized the single crystal nBF via the hydrothermal synthesis route. The hydrothermal temperature, duration, and surfactant conditions were optimized to improve the magnetic properties of the nBFs, with further improvement achieved by post-annealing. The annealed nBFs were aligned dielectrophoretically (DEP) in the polymer matrices by applying an AC electric field. Under the influence of this electric field, nBFs were observed to rotate, align and form chains within the polymer matrix. Optical microscopy (OM) imaging was used to determine the electrical alignment conditions (duration, magnitude, and frequency) and these parameters were used to fabricate the composites. A Teflon setup with Indium Tin Oxide (ITO) coated Polyethylene Terephthalate (PET) was used, where the ITO coatings act as electrodes for the electric field-manipulation. To simultaneously apply the magnetic field, this Teflon setup is placed between two permanent magnets capable of generating a 0.6 T external magnetic field. Along with electric and magnetic fields, concurrent heating was applied to cure the PDMS and freeze the microstructure formed due to electric and magnetic fields. Upon completion of the curing step, parallel chain formation is observed under OM. The X-Ray Diffraction (XRD) results also confirm that the particles are magnetically oriented in the direction of the magnetic field within the chain. Vibrating Sample Magnetometry (VSM) measurements and dielectric spectroscopy are used to characterize the extent of anisotropy and improvement in dielectric and magnetic properties compared to random composites. We find that simultaneous electric and magnetic field alignment improves the dielectric properties by 12% compared to just magnetic alignment. We also observe 19% improved squareness ratio when both fields are applied. The possibility of simultaneous electrical and magnetic alignment of magnetic nanoparticles will open up new doors to manipulate and design particle-modified polymers for various applications.
Proceedings Papers
Proc. ASME. SMASIS2017, Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies, V001T01A008, September 18–20, 2017
Paper No: SMASIS2017-3868
Abstract
Magneto-Active elastomers (MAEs) and magneto-rheological elastomers (MREs) are smart materials that consist of hard and soft magnetic particles, respectively, embedded in a flexible matrix. Their actuation capabilities are dependent on the arrangement of particles achieved during the fabrication process. Previous works have shown varying degrees of particle alignment and / or agglomeration as a function of fabrication process variable, most notably volume fraction of the particulates, their magnetic material type (hard vs soft), and the strength of the external field applied during curing. In this work, we simulated the dynamics of magnetic particles suspended in a fluid matrix to predict the evolution of microstructures resulting from these varying process conditions. The simulations accounted for the magnetic interaction of all particles using standard dipole-dipole interaction potentials along with dipole-field potentials developed from the Zeeman Energy. Additionally, the field local to each particle, on which magnetization depends, was determined by the sum of the external fields generated by each member of the ensemble and their demagnetizing fields. Fluid drag forces and short range particle-particle repulsion (non-overlapping) were also considered. These interactions determined the body forces and torques acting on each particle that drove the system of equations of motions for the ensemble of particles. The simulation was carried out over a nearest neighbor periodic unit cell using an adaptive time stepping numerical integration scheme until an equilibrium structure was reached. Structural parameters, related to the magnetic energy, spatial distribution, spatial alignment, and orientation alignments of the particle distributions were defined to characterize the simulated structures. The effect of volume fraction and intensity of the external magnetic field on the achieved particle distributions were studied. At low external field strengths, the particles formed long entangled chains that had very low alignment with the applied field. The remnant magnetic potential energy of these configurations was also significantly low. As the field is increased the length of the chains reduced and the alignment increased. The corresponding change in magnetic potential energy of the system with an increase in the applied field was found to follow a power law fit that spanned a wide range of magnetic field strengths. At low volume fractions the particles aligned rapidly with the field and formed short chains. As the volume fraction of the samples increased the chains grew longer and closer to each other, and magnetic potential of the structure became lower. Results of the simulations suggest that it is possible to tailor the microstructure and thus affect remanent magnetization and magnetization anisotropy, by judicious control of process parameters. This ability could have implications for newly emerging additive manufacturing techniques utilizing suspensions of magnetic particulates.
Proceedings Papers
Proc. ASME. SMASIS2017, Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies, V001T02A001, September 18–20, 2017
Paper No: SMASIS2017-3774
Abstract
Magneto-rheological fluids (MRF) are commonly applied in MRF brakes and vibration damping. The apparent viscosity dependence with respect to the magnetic field has been addressed in detail in the state of the art. The aim of this paper is to experimentally study the vibration effects on the particle chain-like structures and, as a consequence, the shear stress variation applied to the fluid. Three vibration configurations have been applied to a ferromagnetic cylinder rotating between two magnetic poles filled with MRF a “Z-vibration” where the generated displacement is along the rotation axis of the shearing cylinder, a “θ-vibration”, tangential to the cylinder, and an “R-vibration”, normal to the cylinder surface. First we focus on the vibration mode characterisation in free air, and then when plunged in the fluid. In a second step, we measure the reactive torque generated on the clutch under different magnetic field intensities with different rotation speeds and vibration amplitudes. It appears that the “R-vibration” configuration is providing the most influence, up to 20% of torque reduction observed at moderate B field. The “Z-vibration” and the “θ-vibration” configurations respectively have less influence on the torque, nevertheless vibrations always tend to decrease the corresponding yield stress in the MRF.
Proceedings Papers
Proc. ASME. SMASIS2017, Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies, V001T01A010, September 18–20, 2017
Paper No: SMASIS2017-3886
Abstract
Among anode materials for lithium ion batteries, silicon (Si) is known for high theoretical capacity and low cost. Si changes volume by 300% during cycling, however, often resulting in fast capacity fade. With sufficiently small Si particles in a flexible composite matrix, the cycle life of Si anodes can be extended. Si anodes also demonstrate stress-potential coupling where the open circuit voltage depends on applied stress. In this paper, we present a NMC-Si battery design, utilizing the undesired volume change of Si for actuation and the stress-potential coupling effect for sensing. The battery consists of one Li(Ni 1/3 Mn 1/3 Co 1/3 )O 2 (NMC) cathode in a separator pouch placed in an electrolyte-filled container with Si composite anode cantilevers. Models predict the shape of the cantilever as a function of battery state of charge (SOC) and the cell voltage as a function of distributed loading. Simulations of a copper current collector coated with Si active material show 11.05 mAh of energy storage, large displacement in a unimorph configuration (>60% of beam length) and over 100 mV of voltage change due to gravitational loading.
Proceedings Papers
Proc. ASME. SMASIS2017, Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies, V001T01A004, September 18–20, 2017
Paper No: SMASIS2017-3807
Abstract
The sensitivity of piezoelectric/polymer composite materials is inversely proportional to their dielectric permittivity. Introducing a cellular structure into these composites can decrease the permittivity while enhancing their mechanical flexibility. Foaming of highly filled polymer composites is however challenging. Polymers filled with high content of dense additives such as lead zirconate titanate (PZT) exhibit significantly decreased physical foaming ability. This can be attributed to difficulty in gas diffusion, decreased fraction of the matrix available, the reduced number of nucleated cells and the difficulty in cell growth. Here, both CO 2 foaming and Expancel foaming were examined as potential methods to fabricate low-density thermoplastic polyurethane (TPU)/ PZT composite foams. While composites containing up to only 10vol.% PZT could be foamed using CO 2 , Expancel foaming could successfully yield highly-expanded composite foams containing up to 40vol.% (80wt.%) PZT. Dispersed Expancel particles in TPU/PZT composites acted as the blowing agent, activated by subjecting the samples to high temperatures using a hot press. Using Expancel, foams with expansion ratios of up to 9 were achieved. However, expansion ratios of greater than 4 were not of interest due to their poor structural integrity. The density of solid samples ranged from 1.8 to 3.3 g.cm −3 and dropped by a maximum of 80%, even for the highest PZT content, at an expansion ratio of 4. As the expansion increased, the dielectric permittivity of both CO 2 -foamed and Expancel-foamed TPU/PZT composites decreased significantly (up to 7.5 times), while the dielectric loss and electrical conductivity were affected only slightly. This combination of properties is suitable for high-sensitivity and flexible piezoelectric applications.
Proceedings Papers
Proc. ASME. SMASIS2017, Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies, V001T08A010, September 18–20, 2017
Paper No: SMASIS2017-3873
Abstract
In the field of Additive Manufacturing (AM), one of the major applications of laser-based 3D metal printing is the creation of custom implants for medical purposes. However, a significant challenge in the manufacturing of implants using Selective Laser Melting (SLM) is the formation of partially melted particles on the surface of medical implants. These particles result in a multitude of issues including plurality of structurally weak points on the designed implants, obstruction of important design features, and possibility of dislodgement over the service life span, thereby posing a threat to the recipient. To address the above challenges, it is imperative to develop a simple but effective surface cleaning method to remove partially melted particles from the surface without damage to the designed medical implants. In this work, a comparative study was conducted to investigate the effect of both chemical and electro-plasma based cleaning processes on the removal of partially melted particles from the surfaces of 3D printed Ti-6Al-4V medical screw implants. These techniques include chemically polishing implants with HF-HNO 3 acid solutions and using an electro-plasma based cleaning process. With the field of additive manufacturing rapidly expanding, this work offers valuable insight on proper post-process treatment of 3D printed parts for future medical purposes in biomedical fields.
Proceedings Papers
Proc. ASME. SMASIS2017, Volume 2: Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation; Structural Health Monitoring, V002T03A030, September 18–20, 2017
Paper No: SMASIS2017-3893
Abstract
This manuscript investigates one way sound propagation in Magnetorheological fluids (MRF) using spatio-temporal modulation of the applied magnetic field. One-way propagation of waves in a structure can have potential technological applications such as sound isolation, filtering and echo suppression. Several experimental works in the literature have shown that elastic properties of MRF’s (local speed of sound, in particular) are dependent on the applied magnetic field. Therefore, several fascinating possibilities regarding the manipulation of sound waves in MRF, by tailoring the applied magnetic field, exist. A effective medium approximation (previously used in literature) is used to analyze sound propagation in a MRF composed of hydrogen-reduced Iron particles suspended in pure glycerine. Floquet-Bloch theory is used to obtain a quadratic eigenvalue problem that gives the band structure as a function of the material and modulation parameters. When the applied magnetic field is allowed to vary only in space, regular bandgaps are obtained as a result of Bragg scattering. In contrast, the temporal variation of the magnetic field to induce a traveling wave like variation of the modulated parameters, breaks the symmetry of the Brilloouin zones and we obtain directional bandgaps. The theoretical band structure is validated by numerical band diagrams obtained using a Finite Element code. This research has important applications in active sound manipulation.
Proceedings Papers
Proc. ASME. SMASIS2016, Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring, V001T02A007, September 28–30, 2016
Paper No: SMASIS2016-9163
Abstract
The unique micro/nano-structure of an intrinsically conducting polymer can be tuned to get higher gauge factors (GF) and reliability, which make them better materials for piezo-resistive applications than conducting carbon based composites and metallic composites. This work reports a highly sensitive conducting polyaniline (PANI)-based composite film that showed a GF ∼66. This high GF was achieved by forming a particular microstructure of conducting PANI particles in a free standing film of PANI-DBSA/EVA. The paper also attempts to explain the mechanism for the observed high sensitivity using the electronic percolation theory, shape and size of the conducting particles and the changes in the microstructure, due to strain. The high sensitivity, high stability during cyclic loading and low electrical hysteresis together with high mechanical strength make PANI-DBSA/EVA conducting composite film a promising material for piezo-resistive strain sensing applications.
Proceedings Papers
Proc. ASME. SMASIS2016, Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring, V001T01A014, September 28–30, 2016
Paper No: SMASIS2016-9178
Abstract
Origami — the Japanese art of folding — has inspired various engineering applications for several decades due to its ability to manipulate complex shapes. In our study, multi-field actuated self-folding Origami structures are developed with the implementation of two classes of smart materials: relaxor ferroelectric polymers and magneto-active elastomers (MAEs). The chosen relaxor ferroelectric is P(VDF-TrFE-CTFE), a P(VDF)-based terpolymer and the MAE is a PDMS substrate with embedded barium hexaferrite particles. At the macroscale, this study involves the modeling of the large deformation of a bimorph comprising the aforementioned magnetically and electrically actuated materials using a 1D analytical model derived from the equilibrium of a differential element. The large deformation is extracted from curvatures solved at each point for the resulting differential equation of the equilibrium state. On the microscale, this study also considers the nonlinear behavior of the smart materials. The nonlinear dielectric response of the relaxor ferroelectric polymer is captured by an electric field-dependent electrostrictive coefficient derived from a microstructure-based energy balance for the electrostriction of the terpolymer. The energy density function is postulated to be composed of an elastic contribution described by the Arruda-Boyce hyperelastic model and an electric contribution based on dipole-dipole interactions. On the other hand, a magnetic field-dependent torque drives the actuation of the MAEs, which is also dependent on the orientation of the material to the field. The integration of the micro and macro components results in an analytical model of a 1D, multi-layered flat structure that can be numerically solved for displacements under combined fields. The model is compared with well-matching experimental results of a unimorph and a bimorph structure as validation. The experiments measured the tip displacement of the beam under combined fields for a quantitative analysis. The study takes the analysis further by optimizing parameters such as geometry, field strengths, and the combination of active layers for relevant target shapes.
Proceedings Papers
Proc. ASME. SMASIS2016, Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring, V001T04A014, September 28–30, 2016
Paper No: SMASIS2016-9270
Abstract
Traditionally, sensors to be integrated into a structural component are attached to or mounted on the component after the component has been fabricated. This tends to result in unsecured sensor attachment and/or serious offset between the sensor reading and the actual status of the structure, leading to performance degradation of the host structure. This paper describes a novel extrusion-based additive manufacturing process that has been developed to enable embedment of sensors in ceramic components during the part fabrication. In this process, an aqueous paste of ceramic particles with a very low amount of binder content (< 1 vol%) is extruded through a moving nozzle to build the part layer-by-layer. In the case of sensor embedment, the fabrication process is halted after a certain number of layers have been deposited. The sensors are placed in their predetermined locations, and the remaining layers are deposited until the part fabrication is completed. Because the sensors are embedded during the fabrication process, they are fully integrated with the part and the aforementioned problems of traditional sensor embedment can be eliminated. The sensors used in this study were made of sapphire optical fibers of 125 and 250 micro-meters diameter and can withstand temperatures up to 1600 °C. After the parts were built, two different drying processes (freeze drying and humid drying) were investigated to dry the parts. The dried parts were then sintered to achieve near theoretical density. Scanning electron microscopy was used to observe the embedded sensors and to detect any possible flaws in the part or embedded sensor. Attenuation of the sensors was measured in near-infrared region (1500–1600 nm wavelength) with a tunable laser source. Raman spectroscopy was performed on the samples to measure the residual stresses caused by shrinkage of the part and its slippage on the fibers during sintering and mismatch between the coefficients of thermal expansion of the fiber and host material. Standard test methods were employed to examine the effect of embedded fibers on the strength and hardness of the parts. The result indicated that the sapphire fiber sensors with diameters smaller than 250 micrometers are able to endure the freeform extrusion fabrication process and also the post-processing without compromising the part properties.
Proceedings Papers
Proc. ASME. SMASIS2016, Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting, V002T03A032, September 28–30, 2016
Paper No: SMASIS2016-9329
Abstract
Magnetorheological fluids (MRF) are suspensions of fine, magnetically polarizable particles in a non-magnetic carrier fluid. Under the influence of a magnetic field the particles form chains in the direction of the field lines, whereby the resulting shear stress can be changed high dynamical, largely linear with a good reproducibility by several orders of magnitude. Furthermore, the MRF technology provides a drag torque-free operation by a magnetically induced MR-fluid movement control, resulting in new perspectives regarding the increase of energy-efficiency with improved switching dynamics and comfort for applications e.g. in the powertrain of vehicles. A certain drawback of the MR-fluid control is a hysteresis behavior of the torque generation with respect to the controlling current caused by the partially filled shear gaps. In addition, the hysteresis depends on the rotational speed due to the resulting centrifugal forces, so that the influence of this external disturbance must be compensated, too. In order to obtain a linearized force characteristic of the actuator, a modified Prandtl-Ishlinskii approach for the hysteresis compensation is designed, parametrized and validated by experiments within this paper.
Proceedings Papers
Proc. ASME. SMASIS2016, Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting, V002T03A024, September 28–30, 2016
Paper No: SMASIS2016-9263
Abstract
This paper presents Kinematics and Dynamics of a Shape-Shifting Surface, a robotic system able to take on the shape of arbitrary connected 3D surfaces. Such a surface, which we introduced and described in previous work, consists of piecewise controllable chains in turn composed of serially connected foldable “robotic particles”. Aiming at a high resolution rendering, where tiny particles need to be combined in a large number, a tendon-driven design is a lightweight and scalable solution. However, improper actuation strategies might expose the system to undesired forces, which can compromise its integrity and stability. To tackle this problem, optimal actuation and planning strategies are required to anticipate unacceptable situations. To this end, a dynamic model is derived to predict the reaction of the system subject to control actions. Being the system both tendon-driven and under-actuated, we have to overcome a number of challenges in deriving this model.
Proceedings Papers
Proc. ASME. SMASIS2016, Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting, V002T03A031, September 28–30, 2016
Paper No: SMASIS2016-9290
Abstract
This study investigates the dynamic properties of Magneto-Rheological Elastomers (MRE) with hard magnetic particles used as bending actuators under an alternating magnetic field. As earlier studies demonstrated that a dispersion of hard magnetic particles in polymeric materials, aligned in a preferred orientation, cause rotational motion in the sample when a magnetic field is applied perpendicularly to the magnetization direction of the particles. They focused on static responses of MREs with hard magnetic particles. The primary goal of this study is to characterize the dynamic behavior of a flexible bending actuator based on MREs under alternating magnetic fields. In this study, samples from a previous study, consisting of barium hexaferrite particles at 30% concentrations by volume, were tested. A C-shaped electromagnet was constructed to apply alternating magnetic fields along the length of the sample. By securing only one end of the sample to the electromagnet, the sample is free to bend similar to a cantilever beam. Using this setup, the tip displacement of the sample was recorded using a precision load cell and a laser displacement sensor under various input magnetic field strengths and frequencies. The results show that increasing the voltage output or the magnetic field strength increases the displacement of the sample. The results also show that, as the frequency of the sinusoidal voltage input increases, the amplitude of the tip displacement of the sample decrease.
Proceedings Papers
Proc. ASME. SMASIS2016, Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting, V002T03A011, September 28–30, 2016
Paper No: SMASIS2016-9118
Abstract
A new equivalent circuit is presented, which describes the transport of a chemical solution with a certain concentration in a fluidic channel. Channels are basic parts of a microfluidic systems and the concentration of the chemical solution can control the opening and closing of valves based on smart hydrogels. This type of microfluidic systems facilitates the autonomous control of fluid flow, e.g. in chemo-fluidic oscillators. Through this channel, the solution is transported at a velocity determined by the flow rate through the channel and its cross section. While the volumetric flow is not delayed in an ideal channel, the channel acts as delay line for the particles and thus for a certain concentration transport through the channel. In this setting, the transport of the dissolved chemical by water traveling along the delay channel can be described by the one-dimensional transport equation. In order to derive the equivalent circuit, the transport equation is numerically approximated based on the well-known Method of Lines. This method consists in approximating the original PDE via a large system of ODEs. The ODEs are obtained by discretizing the PDE in space, in such a way that each component of the resulting system of ODEs approximates the solution of the PDE at some grid point along the spatial interval. Once the system of ODEs has been constructed, a flow and a difference quantity can be defined and the ODEs interpreted as finite network elements. Since the equations are isomorphic to electrical ODEs of electrical network elements, the fluidic channel can be expressed by an equivalent circuit. Thus the transient behavior of the transport mechanism can be calculated using a circuit simulator as part of a design automation. Simulation results are presented.
Proceedings Papers
Proc. ASME. SMASIS2015, Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Modeling, Simulation and Control of Adaptive Systems, V001T03A004, September 21–23, 2015
Paper No: SMASIS2015-8830
Abstract
In the present paper we investigated the behaviour of magnetorheological fluids (MRFs) under a hydrostatic pressure up to 40 bar. We designed, manufactured and tested a magnetorheological damper (MRD) with a novel architecture which provides the control of the internal pressure. The pressure was regulated by means of an additional apparatus connected to the damper that acts on the fluid volume. The MRD was tested under sinusoidal inputs and with several values of magnetic field and internal pressure. The results show that the new architecture is able to work without a volume compensator and bear high pressures. On the one hand, the influence of hydrostatic pressure on the yield stress of MRFs is not strong probably because the ferromagnetic particles cannot arrange themselves into thicker columns. On the other hand, the benefits of the pressure on the behaviour of the MRD are useful in terms of preventing cavitation.
Proceedings Papers
Proc. ASME. SMASIS2015, Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Modeling, Simulation and Control of Adaptive Systems, V001T02A007, September 21–23, 2015
Paper No: SMASIS2015-8975
Abstract
The Digital Twin concept represents an innovative method to monitor and predict the performance of an aircraft’s various subsystems. By creating ultra-realistic multi-physical computational models associated with each unique aircraft and combining them with known flight histories, operators could benefit from a real-time understanding of the vehicle’s current capabilities. One important facet of the Digital Twin program is the detection and monitoring of structural damage. Recently, a method to detect fatigue cracks using the transformation response of shape memory alloy (SMA) particles embedded in the aircraft structure has been proposed. By detecting changes in the mechanical and/or electromagnetic responses of embedded particles, operators could detect the onset of fatigue cracks in the vicinity of these particles. In this work, the development of a finite element model of an aircraft wing containing embedded SMA particles in key regions will be discussed. In particular, this model will feature a technique known as substructure analysis, which retains degrees of freedom at specified points key to scale transitions, greatly reducing computational cost. By using this technique to model an aircraft wing subjected to loading experienced during flight, we can simulate the response of these localized particles while also reducing computation time. This new model serves to demonstrate key aspects of this detection technique. Future work, including the determination of the material properties associated with these particles as well as exploring the positioning of these particles for optimal crack detection, is also discussed.
Proceedings Papers
Proc. ASME. SMASIS2015, Volume 2: Integrated System Design and Implementation; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting, V002T05A012, September 21–23, 2015
Paper No: SMASIS2015-9078
Abstract
Mechanoluminescence (ML) is a property of inorganic and organic materials that describes the emission of light due from the application of force. Inorganic crystals (mostly phosphors) and certain organic macromolecules exhibit elastico-ML and are a natural fit for structural health monitoring (SHM) of composite structures. Composites with particulate ML crystals enable the visualization of stress distribution over a plane and over contoured surfaces in a spatially continuous manner. Imaging ML composites with affordable high-resolution imaging methods further enables the creation of high-resolution validation method for computational methods. Also, with the embedding of suitable photo-detectors for signal detection, the need for additional wiring, sensor electronics and high-level electronics is eliminated. In this conference proceedings technical publication, the application of commercially available ZnS:Cu, Mn phosphors for SHM of polymer composites will be presented via experimental and structural simulation. Results demonstrate the dependence of intensity of elastico-ML (in cd/cm 2 ) on strain rate, strain and composition (w/w of ML particulates). The experiments show methods to fabricate elastic coupons of phosphors in polydimethylsiloxane (PDMS) and subsequent methods for application in SHM. The structures are excited at 5Hz to 17.5Hz to develop empirical relationships between strain rate and EML intensity and it is shown that the intensity increases nonlinearly with the magnitude of stress/strain rate. A range of stresses transferred to the EML particles by the PDMS matrix is also numerically predicted. The numerical simulations show the importance of interfacial binding in the transfer of stress and subsequent EML emission. These results also provided a basis for validation and improvement of structural simulation models.