Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-10 of 10
Gates (Closures)
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. SMASIS2018, Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies, V002T07A005, September 10–12, 2018
Paper No: SMASIS2018-7979
Abstract
Impulsive energy provides a promising source for energy harvesting techniques due to their high amplitude and abundance in a living environment. The sensitivity to excitation of bistable energy harvesters makes them feasible for impulsive-type events. In this paper, a novel impulsively-excited bistable energy harvester with rotary structure and plectrum is proposed to achieve plucking-based frequency up-conversion. The input excitation is converted to plucking force on the bistable energy harvester, so as to help it go into the high-energy orbit. The piezoelectric and electromagnetic transduction mechanisms are combined by incorporating a coil to the structure in order to overcome the increase of damping introduced by the bistable configuration. As a result, high-energy output and broadband performance could be realized. Impact mechanics is employed to develop a comprehensive model, which could be used to analyze the nonlinear dynamics and predict the system responses under various plucking velocities and overlap lengths. Numerical simulation shows that the bistable energy harvester could experience large-amplitude oscillation under impulsive excitation and the hybrid configuration outperforms the standalone ones under high damping ratio and low coupling coefficient. The proposed design is targeted to be applied on the turnstile gates of the subway station. Less human effort would be needed when passengers pass the turnstile gate due to the snap-through motion of bistability.
Proceedings Papers
Proc. ASME. SMASIS2017, Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies, V001T01A014, September 18–20, 2017
Paper No: SMASIS2017-3979
Abstract
Relaxor ferroelectric polymers are a unique branch of electro-active polymers (EAPs) that generate high electromechanical strain with relatively low hysteresis and high nonlinearity. Polyvinylidene fluoride-based EAPs possess these qualities due to the semicrystalline nature of their microstructure. The interactions of electric dipoles within the microstructure of the material generate large strains under an external electric field, and the reduced crystalline domain sizes yield a relaxor effect by exhibiting low hysteresis and hyperelastic properties. This phenomenon has been partially modeled by previous works, but micro-electro-mechanisms for electrostriction in the microstructure have been largely ignored. This study focuses on the effects of various microstructural frameworks on the nonlinear dielectric behavior of dipole-based, semicrystalline EAPs. The Helmholtz free energy function of a microscopic representative volume element (RVE) is composed of an electrostatic energy and an elastic energy. The dipole-dipole interaction energy is prescribed for the electrostatic forces observed among the crystalline regions, and the elastic component attributed to the relaxation of the amorphous phase is modeled by the hyperelastic eight-chain model, which is microstructure-based. The RVE of the system is modeled by a central dipole surrounded by dipoles whose relative spatial locations are determined by a probability distribution function (PDF). The hyperelastic amorphous phase constitutes the volume separating the central and surrounding dipoles. The free energy of the RVE is implemented into a continuum description of the equilibrium of the system to obtain electromechanical relations. Additionally, this electromechanical response data is applied to a 1D structural mechanics model for simulating the large deformation of a multi-layered beam. The effects of microstructure on electrostrictive coupling are explored by varying the centers and deviations of dipole locations within the PDF. Discrete microstructural arrangements representing 3-chain network averaging schemes may be studied alongside more continuous ellipsoidal or random models of dipole spatial arrangements. The simulation results of the PDF-based networks are in good agreement with experimental data. The results indicate that the electrostrictive behavior of EAPs is strongly dependent on (1) the relative dipole spatial locations and (2) the extent of the regions containing dipoles, which represent crystalline domains. The model finds that adding extra crystalline domains in the network averaging schemes generates a better characteristic behavior due to a broader averaging of spatial orientations. These results offer a gateway to predicting microstructurally-dependent dipole-based behavior that can lead to the predictive theoretical tailoring of microstructures for desired electromechanical properties.
Proceedings Papers
Proc. ASME. SMASIS2016, Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting, V002T03A019, September 28–30, 2016
Paper No: SMASIS2016-9212
Abstract
The availability of low-cost, readily programmable digital hardware offers numerous opportunities for novel modeling and control approaches. One such opportunity is the realization of hardware modeling of distributed dynamic systems. Such models could be useful for control algorithms that require high-fidelity models operating in real-time. The ultimate goal is to utilize digital systems with programmable hardware. As a proof-of-concept, multiple discrete microcontrollers have been used to emulate how programmable hardware devices may be used to simulate a distributed vibrating system. Specifically, each microcontroller is treated as a single vibrating mass with stiffness and damping coupling between the masses. Each microcontroller has associated position and velocity variables. The only additional knowledge required to compute the acceleration of each “mass” is thus the position and velocity of each immediate neighboring mass/microcontroller. The computation time is independent of the number of nodes; adding nodes results in no reduction in processing speed. Consequently, the computational approach will be applicable to very high order models. Practical implementation of such models will require digitally programmable hardware such as field-programmable gate arrays (FPGA), however an added benefit will be a still greater reduction in cost, as multiple microcontrollers are replaced by a single FPGA. It is expected that the hardware modeling approach described in this work will have application not only in the field of vibration modeling and control, but also in other fields where control of distributed dynamic systems is desired.
Proceedings Papers
Proc. ASME. SMASIS2014, Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring; Keynote Presentation, V001T03A021, September 8–10, 2014
Paper No: SMASIS2014-7579
Abstract
Charge motion in internal combustion engines is controlled by valves located near the engine ports in the intake path. The valve bodies are obstructions in the air-flow path and are a source of inefficiencies in the engine over its entire operating load. In order to achieve charge motion control without the use of valves, this research investigates the use of synthetic jet actuators to perform swirl and tumble of the air mass entering the cylinder. The purpose of this research is to design, test, and characterize a synthetic jet actuator, and determine the feasibility of using synthetic jet actuators in automotive air-intake systems. The accomplished work to date has led to geometrical optimization, fabrication of a prototype, and experimental investigation for determining jet velocities. The geometrical optimization of synthetic jets has led to a device with a thinner profile that allows it to be embedded in structures with thin (< 5mm) cross-sections and hence we refer to our synthetic jets as surface synthetic jets. It is shown here that air exiting the surface synthetic jets achieves sustained peak velocities well above 125 m/s. A variational principles-based approach is used to model the frequency response of the piezoelectric diaphragm, coupled with the lumped-parameter model for the surface synthetic jets and simulated using MATLAB Simulink ® . The results of this model are validated with experimental results and extended to design charge motion control devices. From these results, it is anticipated that these surface synthetic jet actuators can achieve charge motion control using a radial array of surface synthetic jet actuators distributed around the intake runner.
Proceedings Papers
Proc. ASME. SMASIS2013, Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting, V002T07A022, September 16–18, 2013
Paper No: SMASIS2013-3197
Abstract
Many signals of interest in the assessment of structural systems lie in the quasi-static range (frequency ≪ 1Hz). This poses a significant challenge for the development of self-powered sensors that are required not only to monitor these events but also to harvest the energy for sensing, computation and storage from the signal being monitored. This paper combines the use of mechanically-equivalent frequency modulators and piezo-powered threshold detection modules capable of computation and data storage with a total current less than 10nA. The system is able to achieve events counting for input deformations at frequencies lower than 0.1Hz. The used mechanically-equivalent frequency modulators allow the transformation of the low-amplitude and low-rate quasi-static deformations into an amplified input to a piezoelectric transducer. The sudden transitions in unstable mode branch switching, during the elastic postbuckling response of slender columns and plates, are used to generate high-rate deformations. Experimental results show that an oscillating semi-crystalline plastic polyvinylidene fluoride (PVDF), attached to the up-converting modules, is able to generate a harvestable energy at levels between 0.8μJ to 2μJ. In this work, we show that a linear injection response of our combined frequency up-converter / piezo-floating-gate sensing system can be used for self-powered measurement and recording of quasi-static deformations levels. The experimental results demonstrate that a sensor fabricated in a 0.5-μm CMOS technology can count and record the number of quasi-static input events, while operating at a power level significantly lower than 1μW.
Proceedings Papers
Proc. ASME. SMASIS2012, Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring, 609-614, September 19–21, 2012
Paper No: SMASIS2012-7916
Abstract
Advanced signal processing approaches such time-frequency analysis are widely used for online evaluation, damage detection, and wear state classification. The idea of this paper is to introduce a new methodology for online examination of wear phenomena in metallic structure by means of acoustic emission (AE), Short-Time Fourier Transform (STFT) and Wavelet Transform (WT). The proposed novel low-cost system is developed for analyzing and monitoring specific signals indicating tribological effects with focus on field programmable gate array (FPGA) implementation of discrete WT (DWT). In addition, experimental results obtained from each approach are given showing the success of the introduced approach.
Proceedings Papers
Proc. ASME. SMASIS2011, ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2, 443-446, September 18–21, 2011
Paper No: SMASIS2011-4921
Abstract
High-pressure hydraulic hoses are used throughout industry to transmit fluid power. The current state of the art in hose replacement consists of two strategies; these are (1) replacement upon failure and (2) time-based replacement. For the replacement upon failure method, end users inspect hoses and either replace when there is obvious physical damage or the hose has burst and allowed the release of fluid under high pressure. Hose users that employ time-based replacement cycles often collect data and either subjectively or statistically choose a replacement frequency intended to prevent unexpected failures. Engineers at Eaton Corporation worked with Purdue University to develop an alternative. A novel hose construction using two conductors with an isolating layer provides a component in an electrical circuit which can be monitored to determine the status, or health, of a hose in operation. The first step in this development was the realization that hose failure is a process and not an event. By tracking a hose’s electrical signature and characterizing the change that occurs when the internal structure begins to break down, a user is alerted prior to a catastrophic hose failure. Eaton is developing notification systems capable of both monitoring the hose’s electrical signature and alerting an equipment user prior to unexpected failure. The system requires direct electrical connection to the hose fitting for monitoring. There are currently two strategies in development, a wired system and a wireless system. The wired system uses a remote diagnostic unit with cables running to each hose assembly to query the hose and alert an equipment user directly. The wireless system employs battery-powered sensors installed on a hose assembly which communicate with a gateway located nearby. When a hose approaches its end of life a warning is issued by illuminating a warning light or issuing a remote warning through a cellular or wireless network. There are significant gains in the ability to prevent hydraulic hose failures. These unexpected incidents lead to downtime, damage to equipment, environmental damage, and serious personal injury. Additionally, using this advanced warning system allows users to use nearly a hose’s entire life. This improves asset utilization considerable when compared to the useful life sacrificed by using time-based replacement schedules. This technology will reduce operating costs and prevent downtime, environmental incidents, and the threat of personal injury present when hydraulic hose fails.
Proceedings Papers
Proc. ASME. SMASIS2011, ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1, 239-247, September 18–21, 2011
Paper No: SMASIS2011-5242
Abstract
The authors had previously theoretically demonstrated that multiferroic nanomagnetic logic can be clocked in ∼1 GHz with few 100 kT/bit power dissipation which is ∼3 orders of magnitude more energy efficient than current CMOS transistor technology that dissipates several 100,000 kT/bit.. In this work, we propose the more novel concept of 4-state logic by numerically demonstrating the feasibity of an ultra low-power 4-state NOR logic gate using multiferroic nanomagnets with biaxial magnetocrystalline anisotropy. Here, the logic bits are encoded in the magnetization orientation of a nanoscale magnetostrictive layer elastically coupled to a piezoelectric layer. The piezoelectric layer can be clocked with a small electrostatic potential (∼0.2 V) to switch the magnetization of the magnetic layer. We also address logic propagation, where the accurate and unidirectional transfer of data from an input nanomagnet along an array of nanomagnets is needed. This is accomplished by devising an effective clocking scheme to the nanomagnet array, which allows for the realization of feasible logic circuits. Ultimately, this technology would enable higher order information processing, such as pattern recognition, to be performed in parallel at very high speeds while consuming extremely low power. Potential applications include high-density logic circuits, associative memory and neuromorphic computing.
Proceedings Papers
Proc. ASME. SMASIS2010, ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2, 769-773, September 28–October 1, 2010
Paper No: SMASIS2010-3861
Abstract
An approach to detect anomalies in IGBTs is to monitor the collector-emitter current and voltage in application. These current and voltage parameters can then be reduced to a univariate distance measure called the Mahalanobis Distance (MD). The MD values with the use of an appropriate threshold enable anomaly detection of these devices. Mahalanobis distances (MD) are weighted Euclidean distances; the distance of each point from the center of the distribution is weighted by the inverse of the sample variance-covariance matrix. The presence of outliers in the monitored data can lead to the overestimation of the covariance matrix that in turn affects the anomaly detection results. This issue can be addressed by the use of robust covariance estimation techniques. In this study, the minimum volume ellipsoid (MVE) estimator, the minimum covariance determinant estimator (MCD) and the nearest neighbor variance estimator (NNVE) were used for anomaly detection of IGBTs. IGBTs were aged under a resistive load until failure. The monitored collector-emitter current and voltage values were used as input parameters for the MD calculation. The three robust covariance estimation techniques were used to compute the MD values and the anomaly detection times were compared to the results obtained by the classical covariance estimation technique.
Proceedings Papers
Proc. ASME. SMASIS2009, Volume 2: Multifunctional Materials; Enabling Technologies and Integrated System Design; Structural Health Monitoring/NDE; Bio-Inspired Smart Materials and Structures, 383-391, September 21–23, 2009
Paper No: SMASIS2009-1437
Abstract
This paper presents a multi-channel electronic power controller device for Shape Memory Alloy (SMA) actuators. The use of shape memory alloy wires as actuators has been proposed in numerous novel applications such as Smart Inhaler System [1], BAT Micro Air Vehicle [2], etc. These systems have multiple SMA wires for actuation of their mechanisms. The SMA wires can be actuated by controlling the joule heating or the electric power in that wire. This paper describes the development of a multi-channel power device that can control multiple SMA actuators simultaneously. The device presented herewith utilizes a Field Programmable Gate Array (FPGA) board and a custom built electronic device to independently and simultaneously control electric power in three different SMA actuators. The controller adapts to the non linear and hysteretic behavior of the resistance of the SMA actuators and adjusts the pulse width modulated voltage across them to maintain the desired value of power. The controller uses the resistance measurement of the SMA actuators as feedback. With the help of modeling efforts to relate resistance to strain, it is envisioned that feedback position control of these actuators can be implemented without the necessity of a sensor. The device is tested with graphic user interface which enables a user to control various parameters during operation of this device and to monitor the results. The design and implementation of this device is detailed in this paper along with its performance charts. The results relate the input power, observed actuation strokes and measured resistances in the SMA actuators under various conditions. A relevant discussion on implementing position control in Smart Inhaler System using this device is also presented.