Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-2 of 2
Energetics
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. SMASIS2018, Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation, and Control of Adaptive Systems; Integrated System Design and Implementation, V001T01A022, September 10–12, 2018
Paper No: SMASIS2018-8250
Abstract
There has been increasing focus in the area of in-situ structural health monitoring since the advent of embedded nano-composites. This experimental research investigates the structural health monitoring abilities of polymer bonded energetics embedded with a uniformly dispersed but randomly oriented carbon nanotube (CNT) sensing network within the polymer binder. A common formulation of the recent solid propellants consists of ammonium perchlorate (oxidizer) and aluminum powder (combustive fuel)-often shaped using a polymer binder, rather than the older techniques of power pressing. Since this study focuses on the structural health of the material and not its thermal properties, monoclinic sugar crystals were used as a substitute for ammonium perchlorate as it has very similar mechanical properties and is much safer in terms of material handling. Thus, a combination of sugar crystals and aluminum powder bound by a Polydimethylsiloxane (PDMS) binder is fabricated in varying concentrations to simulate actual solid rocket propellants. The main focus of this study lies in characterizing the mechanical and electrical properties of the CNT embedded energetic material through subjecting it under mechanical loads; followed by a detailed observation and study of the real time electro-mechanical response under tension and compression. The addition of carbon nanotubes to the polymer binder, thus translates to a real time sensing technique for detection of multi-scale damage in polymer bonded energetics. The results of this study aim to establish a proof of concept for CNT embedded structural health monitoring systems.
Proceedings Papers
Proc. ASME. SMASIS2017, Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies, V001T01A009, September 18–20, 2017
Paper No: SMASIS2017-3869
Abstract
Distributing a carbon nanotube sensing network throughout the binder phase of energetic composites is investigated in an effort for real time embedded sensing of localized heating in polymer bonded explosives (PBXs) through thermo-electromechanical response for in situ structural health monitoring (SHM) in energetic materials. The experimental effort herein is focused on using 70 wt% Ammonium Perchlorate (AP) (solid oxidizer used in solid rocket propellants) crystals embedded into epoxy binder having concentration of 0.1 wt% multi-walled carbon nanotubes (MWCNTs) relative to entire hybrid energetics. Electrical and dielectric properties of neat (i.e. no MWCNTs) energetics and MWCNT hybrid energetics are quantitatively and qualitatively evaluated under localized thermal loading. Electrical and dielectric properties showed variations for both neat energetics and MWCNT hybrid energetics depending on input frequency measurements. Significant thermo-electromechanical response was obtained for MWCNT AP hybrid energetics, providing a proof of concept for thermo-electromechanical sensing for realtime SHM in energetics.