Abstract

Levees are built to safeguard human lives, essential infrastructure, and farmland. However, failure of levees can have catastrophic impacts due to a fast rate of inundation in areas protected by levees. Earthen levees are prone to failure due to excessive moisture content that reduces the shear strength of the soil. The use of levee monitoring systems has demonstrated the ability to reduce the likelihood of failure by creating maps that depict the saturation levels of the surface of the levee, both in terms of space and time. By utilizing extensive sensor networks to continuously monitor these geo-infrastructure systems, the structural deterioration attributed to changing climate can be studied. Measuring environmental parameters surrounding such structures provides insight into the potential stressors that cause structural failure. Steps can then be taken to mitigate those effects on the levees and maintain structural integrity. However, the massive scale of levees makes it difficult to monitor with conventional wired sensors. This paper presents a preliminary investigation into the development and validation of UAV-deployable smart sensing spikes for soil conductivity levels in levees, which is a measurement modality for determining soil saturation levels. For this work, Gaussian process regression (also known as kriging) is used to model the soil saturation levels between sensing spikes obtaining a continuous moisture map of the levees. The expanded data is then categorized using a clustering-based machine learning approach with conductivity data from sensing spikes as model inputs. The machine learning model output is sorted into three categories: dry, partially saturated, and saturated soil. The findings of a laboratory study are presented, and the implications of the raw and expanded data are discussed. This work will aid in predicting potential levee failure risks and maintenance requirements based on the analysis of the soil conditions using a network of smart sensing spikes.

This content is only available via PDF.
You do not currently have access to this content.