Abstract

In the recent years, the materials composing the traditional of aircrafts are being progressively replaced with lower density materials, as the Reinforced Plastics. The same trend has been highlighted in the Automotive field to assess the reduction of fuel consumption and CO2 emission.

In order to achieve an optimization of maintenance a variety of on-board systems has been applied for on-line SHM based on piezoelectric transducers earned a particularly high interest for continuous monitoring on metallic and composite structures. The application of this system in automotive could enhance passenger safety, through the monitoring of the vehicle composite material structure health status.

In this paper, six mathematical models for evaluating the electrical response of piezoelectric sensors have been implemented, with the aim of selecting the most effective model for damage identification. Experimental tests were carried out on three types of simpler specimens of different geometries made of different materials (steel, aluminum and carbon fiber). A correlation study has been carried on in order to support the positioning of sensors.

The proposed numerical-experimental methodology is an essential foundation for the introduction of monitoring systems based on piezoelectric transducers in the Automotive sector.

This content is only available via PDF.
You do not currently have access to this content.