In this study, the design and development of an autonomous morphing wing concept were investigated. This morphing wing was developed in the scope of, the Smart-X project, aiming to demonstrate in-flight performance optimisation. This study proposed a novel distributed morphing concept, with six Translation Induced Camber (TRIC) morphing trailing edge modules, inter-connected triangular skin segments joined by an elastomer material to allow seamless variation of local lift distribution along the wingspan. An FSI structural optimisation tool was developed, to achieve this optimised design, and to produce an optimal laminate design of fibre Glass weave material, capable of reaching target shapes and minimise actuation loads. Analysis of the kinematic model of the embedded actuator was performed, and a conventional actuator design was selected to continuously operate at the required load and fulfil both static and dynamic requirements in terms of bandwidth, actuation force and stroke. Preparations were made in this study for the next stage of the Smart-X design, to refine the morphing mechanism design and build a functional demonstrator for wind tunnel testing.

This content is only available via PDF.
You do not currently have access to this content.