The so-called solid-state ornithopter concept seeks to employ piezoelectric materials to generate flapping motion instead of relying on conventional mechanisms and multi-component actuation systems. The motion can be induced on a wing-like partially-clamped composite substrate with a piezocomposite device (i.e. the Macro-Fiber Composite actuator.) In this research, a design for a flapping wing is proposed based on the analysis of critical system parameters such as geometric properties and boundary conditions. A series of finite element simulations are conducted based on the variation of those parameters. Consequently, the effects of parameters on the structural response is studied. Also, modal analysis is done to examine the effects of geometric parameters on the resonant frequencies of the system. Heaving and pitching responses are examined.

This content is only available via PDF.
You do not currently have access to this content.