Magnetoelectric (ME) composites are viable candidates for use in numerous applications owing to their multifunctional capabilities. These composites develop voltages across the piezo-electric phase under external magnetic fields. Numerous models available in literature consider the magnetostriction under pure magnetic loading. However, fabrication of ME composites results in development of compressive stresses on the magnetostrictive layer, which leads to a poor ME response and hence an initial effective tensile prestress to the magnetostrictive phase is required to either compensate or enhance the ME coupling. In this work, the ME response of an unsymmetric laminate is predicted using a finite element procedure based on Mindlin plate theory, giving due consideration the magnetostrictive nonlinearity, the direction of the applied field and the effect of the stress state on the magnetostrictive response. The model predicts that initial shear stresses, positive or negative, provide the best enhancement to the ME coupling.

This content is only available via PDF.
You do not currently have access to this content.