This paper presents a three-row opposed gripping mechanism with radial configuration for wall-climbing robots inspired by the structure of the gripper of LEMUR IIB. The mechanism builds upon a kind of microspines for climbing robots. This work utilizes an opposed spoke configuration with 3 rows of 31 microspines on each linkage array, splayed around a central bracket. A single motor drives the 3 linkage arrays by a set of gears to achieve attachment and detachment procedures, and the trajectory of each linkage array tip makes the miniature spines easy to penetrate in and pull off the surfaces. The mechanism designed as a foot of climbing robots can vertically resist at least 1kg of load on rough surface. The findings provide a foundation for constructing a system for a rough-wall-climbing robot.

This content is only available via PDF.
You do not currently have access to this content.