Abstract

Morphing airfoils present an effective approach to managing the different requirements in each segment of a mission profile (e.g., takeoff/landing, cruise, and active maneuvering). In this work, an approach to morphing airfoil design that couples aerodynamic performance and internal structural configuration is detailed. The internal structural topology is formulated using a Lindenmayer System (L-System) coupled with a graph-based interpreter known as Spatial Interpretation for Development of Reconfigurable Structures (SPIDRS). The L-System encodes design variables that are interpreted via SPIDRS graphical operations and governs the development of the internal configuration (composed of elastic structural members and actuators). The global optimization uses a weakly coupled fluid-structure interaction (FSI) scheme for a first-order estimation of the aeroelastic loads that are critical for airfoil aerodynamic performance and structural integrity. Each airfoil is evaluated in two states: a standard non-actuated state to determine performance in standard operating conditions (e.g., cruise) and a high lift state, where internal shape memory alloy actuators are deformed to create a high lift configuration for the airfoil (e.g., takeoff/landing). Evaluating the aerodynamic performance of airfoils in these two states results in a series of potential solutions that best manage the tradeoff between aerodynamic metrics for both evaluated cases.

This content is only available via PDF.
You do not currently have access to this content.