Abstract
This paper reports on the design and manufacture of a compact telescopic morphing lattice (CTML) space boom. This boom stows within a 1U CubeSat volume and weighs only 0.475kg. Once deployed, the CTML has a total length of 2m, 20 times the stowed height. The device consists of three multi-stable cylindrical composite lattices connected in series. To improve packaging efficiency, these lattices nest inside one another in the stowed configuration. The morphing lattice is a structure that uses prestress and lamina orientation to seamlessly morph from a short stowed state to a long deployed state. By tailoring the manufacturing parameters, the lattices in the boom have been designed to maximize the deployment force and to be self-deploying. Therefore, the CTML only requires a small, lightweight mechanism to regulate the deployment speed. The deployment speed regulator can also potentially retract the boom back to the stowed state, facilitating reconfigurability.