Abstract

This paper reports on the design and manufacture of a compact telescopic morphing lattice (CTML) space boom. This boom stows within a 1U CubeSat volume and weighs only 0.475kg. Once deployed, the CTML has a total length of 2m, 20 times the stowed height. The device consists of three multi-stable cylindrical composite lattices connected in series. To improve packaging efficiency, these lattices nest inside one another in the stowed configuration. The morphing lattice is a structure that uses prestress and lamina orientation to seamlessly morph from a short stowed state to a long deployed state. By tailoring the manufacturing parameters, the lattices in the boom have been designed to maximize the deployment force and to be self-deploying. Therefore, the CTML only requires a small, lightweight mechanism to regulate the deployment speed. The deployment speed regulator can also potentially retract the boom back to the stowed state, facilitating reconfigurability.

This content is only available via PDF.
You do not currently have access to this content.