Continuum robots are inspired by biological trunks, snakes and tentacles. Unlike conventional robot manipulators, there are no rigid structures or joints. Advantageous is the ease of miniaturization combined with high dexterity, since limiting components such as bearings or gears can be omitted. Most currently used actuation elements in continuum robots require a large drive unit with electric motors or similar mechanisms. Contrarily, shape memory alloys (SMAs) can be integrated into the actual robot. The actuation is realized by applying current to the wires, which eliminates the need of an additional outside drive unit. In the presented study, SMA actuator wires are used in variously scaled continuum robots. Diameters vary from 1 to 60 mm and the lengths of the SMA driven tentacles range from 75 to 220 mm. The SMAs are arranged on an annulus in a defined distance to the neutral fiber, whereby the used cores vary from superelastic NiTi rods to complex structures and also function as restoring unit. After outlining the theoretical basics for the design of an SMA actuated continuum robot, the design process is demonstrated exemplarily using a guidewire for cardiac catheterizations. Results regarding dynamics and bending angle are shown for the presented guidewire.

This content is only available via PDF.
You do not currently have access to this content.