This work details the preliminary design of a morphing airfoil in supersonic flow using evolutionary design principles. The structural topology of the airfoil includes a fixed outer mold line, fixed spars, and designable internal stiffeners and actuators. The designable components are generated using a bio-inspired model known as a Lindenmayer System (L-System), which encodes design variables and governs the development of a structural topology when coupled with an interpretation algorithm. Here, we utilize a graph-based interpretation scheme known as Spatial Interpretation for the Development of Reconfigurable Structures (SPIDRS), which has been shown to effectively explore the mechanism design space using a limited number of design variables. The optimization process behind this preliminary design problem is discussed, and optimal airfoil topologies capable of meeting specified aerodynamic performance criteria are presented in hopes of gaining a better understanding of how actuation systems could be integrated into the next generation of aircraft.

This content is only available via PDF.
You do not currently have access to this content.