Abstract

This paper investigates the optimal geometric parameters for a bioinspired peristaltic piezocomposite pump with the use of an electromechanical Euler-Bernoulli beam model. The peristaltic pump is a self-contained propulsion system involving a series of piezo-active soft cymbal-like segments that are connected with passive soft connective segments. A series of phased excitations in expansion and contraction applied to different active segments of the channel create a traveling wave along the axis of the channel, which in return “propels” the fluid in one direction. A parametric analysis, based on the Euler-Bernoulli beam model, is conducted to improve the effectiveness of the cymbal-like piezocomposite actuators. Area change of the cymbal-like actuators, which is correlated to the propulsion power, is studied based on the analysis of the moment, curvature, and area change due to excitation. Area change is also used to evaluate the effectiveness, and to decide the optimal geometric parameters of the piezocomposite actuators.

This content is only available via PDF.
You do not currently have access to this content.