Recently NRL researchers have embarked on a basic research effort “Tuning Giant Magnetoelectric Properties in Phase Transformation Multiferroics” focused on multifunctional materials for energy transduction and conversion. Multiferroic materials combine at least two coupled ferroic properties and are used in multiple applications including magnetic field sensors, energy harvesting devices, non-volatile memory and antennas. There are very few single phase multiferroic materials, and they normally have relatively low magnetoelectric (ME) coupling coefficient. In contrast, engineered materials such as ME composites fabricated from piezoelectric and magnetostrictive materials can show multiple orders of magnitudes increase in the ME coupling coefficient. The optimal design of ME composites would lead to conditions of maximum response (strain, induced voltage, or field) with minimum applied electric or magnetic fields, providing advanced materials for transduction, sensing, energy harvesting and other applications. That is why NRL researchers are working on piezoelectric materials with enhanced properties due to a phase transformation that would minimize the stimuli needed to achieve large strains. Key to the successful design and fabrication of ME composites is an understanding of interface characteristics as well as individual material components. In this paper we will review the current status of work at NRL on engineered multiferroic composites comprised of piezoelectric and magnetostrictive materials coupled through strain. There are still many open questions about the interfacial properties as well as the individual component materials. Details will be presented from recent work on material characterization under repetitive cycling, interface characteristics, and stress/electric/thermal effects on driving the phase transition in a relaxor ferroelectric single crystal.

This content is only available via PDF.
You do not currently have access to this content.