Inflatable structures provide significant volume and weight savings for future space and soft robotic applications. Structural health monitoring (SHM) of these structures is essential to ensuring safe operation, providing early warnings of damage, and measuring structural changes over time. In this paper, we propose the design of a single flexible strain sensor for distributed monitoring of an inflatable tube, in particular, the detection and localization of a kink should that occur. Several commercially available conductive materials, including 3D-printing filaments, conductive paint, and conductive fabrics are explored for their strain-sensing performance, where the resistance change under uniaxial tension is measured, and the corresponding gauge factor (GF) is characterized. Flexible strain sensors are then fabricated and integrated with an inflatable structure fabric using screen-printing or 3D-printing techniques, depending on the nature of the raw conductive material. Among the tested materials, the conductive paint shows the highest stability, with GF of 15 and working strain range of 2.28%. Finally, the geometry of the sensor is designed to enable distributed monitoring of an inflatable tube. In particular, for a given deformation magnitude, the sensor output shows a monotonic relationship with the location where the deformation is applied, thus enabling the monitoring of the entire tube with a single sensor.

This content is only available via PDF.
You do not currently have access to this content.