Four dimensional (4D) printing is the convergence of three dimensional (3D) printing, which is an emerging additive manufacturing technology for smart materials. 4D printing is referred to the capability of changing the shape, property, or functionality of a 3D printed structure under a particular external stimulus. This paper presents the structural performance, shape memory behavior and photothermal effect of 4D printed pristine shape memory polymer (SMP) and it’s composite (SMPC) with multi-walled carbon nanotubes (MWCNTs). Both materials have demonstrated the ability to retain a temporary shape and then recover their original. It is revealed that the incorporation of MWCNTs into the SMP matrix has enhanced the light stimulus shape recovery capabilities. Light stimulus shape transformation of 4D printed SMPC is advantageous for space engineering applications as light can be focused onto a particular area at a long distance. Subsequently, a model 4D printed deployable boom, which is applicable for small spacecrafts is presented. The shape fixity and recovery behaviors of the proposed boom have been investigated. Notably, the model boom structure has demonstrated ∼86 % shape recovery ratio. The proposed innovative approach of additive manufacturing based deployable composite structures will shape up the future space technologies.

This content is only available via PDF.
You do not currently have access to this content.