This paper presents a motor driven wrist brace that can adjust its stiffness by changing its mesoscale geometry. The design involves a plate structure that folds from a flexible flat shape to a stiff corrugated shape by means of a motor driven tendon. The structure is built using a laminate of rigid and flexible layers, with embedded flexural hinges that allow it to fold. The paper proposes a simplified analytical model to predict stiffness, and physical three-point bending tests indicate that the brace can increase its stiffness up to fifty times by folding.

This content is only available via PDF.
You do not currently have access to this content.