In this paper, we report a low-frequency and wide-bandwidth piezoelectric energy transducer. The transducer is designed based on a piezoelectric plate, a truss mechanism, a spring-mass system and a stopper. The spring-mass system receives kinetic energy from excitation and induces forces, which are further transmitted, amplified by the truss mechanism and applied onto the piezoelectric plate. The stopper is added to truncate the amplitude of the mass. The mass and the stopper interact through impacts. The impact force triggers dynamic bifurcation in the transducer. By taking advantage of the superharmonic resonances and nonlinearity born from the bifurcation, the transducer is able to work efficiently with a wide bandwidth. Through experiment studies on a fabricated prototype, the lowest resonant frequency is around 3.2Hz with the peak-peak voltage output up to 55V. The bandwidth of the transducer is approximately 4.5Hz out of our targeted frequency domain [2.5Hz, 10Hz], broadened by up to 20 times compared to that of the linear system without the stopper.

This content is only available via PDF.
You do not currently have access to this content.