Even though Unmanned Aerial Vehicles (UAVs) operating at low Reynolds numbers are becoming common, their performance and maneuverability are still greatly limited due to aerodynamic phenomena such as stall and flow separation. Birds mitigate these limitations by adapting their wings and feather shapes during flight. Equipped with a set of small feathers, known as the alula, located near the leading edge and covering 5% to 20% of the span, bird wings can sustain the lift necessary to fly at low velocities and high angles of attack. This paper presents the effect on lift generation of different placements of a Leading-Edge Alula-inpsired Device (LEAD) along the span of a moderate aspect-ratio wing. The device is modeled after the alula on a bird, and it increases the capability of a wing to maintain higher pressure gradients by modifying the near-wall flow close to the leading-edge. It also generates tip vortices that modify the turbulence on the upper-surface of the wing, delaying flow separation. The effect of the LEAD can be compared to traditional slats or vortex generators on two-dimensional wings. For finite wings, on the other hand, the effect depends on the interaction between the LEADs tip vortices and those from the main structure. Wind tunnel experiments were conducted on a cambered wing at post-stall and deep-stall angles of attack at low Reynolds numbers of 100,000 and 135,000. To quantify the aerodynamic effect of the device, the lift generated by the wing with and without the LEAD were measured using a 6-axis force and torque transducer, and the resulting lift coefficients were compared. Results show that the location of the LEAD yielding the highest lift enhancement was 50% semi-span away from the wing root. Lift improvements of up to 32% for post stall and 37% for deep stall were obtained at this location, demonstrating that the three-dimensional effects of the LEAD are important. The lift enhancement was also more prominent on a finite moderate aspect-ratio wing (3D) than on an airfoil (2D), confirming that the LEAD is a three-dimensional device. Identifying the configurations and deployment parameters that improve lift generation the most is needed to design an adaptive LEAD that can be implemented on a UAV wing for increased mission-adaptability.
Skip Nav Destination
ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 10–12, 2018
San Antonio, Texas, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-5195-1
PROCEEDINGS PAPER
A Leading-Edge Alula-Inspired Device (LEAD) for Stall Mitigation and Lift Enhancement for Low Reynolds Number Finite Wings
Mihary R. Ito,
Mihary R. Ito
University of Illinois Urbana-Champaign, Urbana, IL
Search for other works by this author on:
Chengfang Duan,
Chengfang Duan
University of Illinois Urbana-Champaign, Urbana, IL
Search for other works by this author on:
Leonardo P. Chamorro,
Leonardo P. Chamorro
University of Illinois Urbana-Champaign, Urbana, IL
Search for other works by this author on:
Aimy A. Wissa
Aimy A. Wissa
University of Illinois Urbana-Champaign, Urbana, IL
Search for other works by this author on:
Mihary R. Ito
University of Illinois Urbana-Champaign, Urbana, IL
Chengfang Duan
University of Illinois Urbana-Champaign, Urbana, IL
Leonardo P. Chamorro
University of Illinois Urbana-Champaign, Urbana, IL
Aimy A. Wissa
University of Illinois Urbana-Champaign, Urbana, IL
Paper No:
SMASIS2018-8170, V002T06A011; 9 pages
Published Online:
November 14, 2018
Citation
Ito, MR, Duan, C, Chamorro, LP, & Wissa, AA. "A Leading-Edge Alula-Inspired Device (LEAD) for Stall Mitigation and Lift Enhancement for Low Reynolds Number Finite Wings." Proceedings of the ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies. San Antonio, Texas, USA. September 10–12, 2018. V002T06A011. ASME. https://doi.org/10.1115/SMASIS2018-8170
Download citation file:
83
Views
Related Proceedings Papers
Related Articles
Detached Eddy Simulation of Micro-Vortex Generators Mounted on NACA 4412 Airfoil
J. Fluids Eng (January,0001)
An Experimental Study of the Flow and Wall Pressure Field Around a Wing-Body Junction
J. Vib., Acoust., Stress, and Reliab (July,1986)
Computational Investigation of a Race Car Wing With Vortex Generators in Ground Effect
J. Fluids Eng (February,2010)
Related Chapters
A PIC32 Based Flight Control System Design for an UAV
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Active Disturbance Rejection Controll of Attitude Stability for UAV Flight Control System
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)