Unlike most modern aircraft, which have a vertical tail component, birds fly utilizing a purely horizontal tail. In order to provide control normally associated with a vertical rudder, bird’s tails are incredibly mobile, twisting, pitching, and widening to perform necessary aerial maneuvers. This research primarily focuses on the development and testing of a mechanical planform morphing horizontal control surface, aiming to emulate the tail-spread control action of birds. This horizontal control surface is implemented on a small, tailless, avian inspired unmanned aerial vehicle (UAV). In this research, the horizontal control surface, made entirely of 3D printed material, comprises a rigid overlapping top layer held together by a soft and elastic honeycomb bottom layer, allowing for shape morphing without compromising structural integrity required to withstand aerodynamic forces. Using the relatively large strain and strength offered by shape memory alloy (SMA) springs, the 3D printed horizontal tail undergoes a notable and consistent geometric change. To quantify the system’s performance, the tail width and center was measured while actuating the springs through a range of frequencies from 0.01 to 10 Hz. Preliminary experiments were conducted in a 1ft. × 1 ft. open loop wind tunnel at the University of Michigan at wind speeds of 5, 10 and 15 m/s to quantify the effects of aerodynamic loading on actuation magnitude and speed.
Skip Nav Destination
ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 10–12, 2018
San Antonio, Texas, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-5195-1
PROCEEDINGS PAPER
Horizontal Planform Morphing Tail for an Avian Inspired UAV Using Shape Memory Alloys
Kevin P. T. Haughn,
Kevin P. T. Haughn
University of Michigan, Ann Arbor, MI
Search for other works by this author on:
Lawren L. Gamble,
Lawren L. Gamble
University of Michigan, Ann Arbor, MI
Search for other works by this author on:
Daniel J. Inman
Daniel J. Inman
University of Michigan, Ann Arbor, MI
Search for other works by this author on:
Kevin P. T. Haughn
University of Michigan, Ann Arbor, MI
Lawren L. Gamble
University of Michigan, Ann Arbor, MI
Daniel J. Inman
University of Michigan, Ann Arbor, MI
Paper No:
SMASIS2018-7986, V002T06A003; 7 pages
Published Online:
November 14, 2018
Citation
Haughn, KPT, Gamble, LL, & Inman, DJ. "Horizontal Planform Morphing Tail for an Avian Inspired UAV Using Shape Memory Alloys." Proceedings of the ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies. San Antonio, Texas, USA. September 10–12, 2018. V002T06A003. ASME. https://doi.org/10.1115/SMASIS2018-7986
Download citation file:
72
Views
Related Proceedings Papers
Related Articles
Numerical Simulation of Airborne Salt Particle Behavior in Dry Gauze Method Using Porous Media Model
J. Appl. Mech (October,2021)
Tip Speed Ratio Influences on Rotationally Augmented Boundary Layer Topology and Aerodynamic Force Generation
J. Sol. Energy Eng (November,2004)
Peak and Post-Peak Power Aerodynamics from Phase VI NASA Ames Wind Turbine Data
J. Sol. Energy Eng (May,2005)
Related Chapters
Cooling a Radar’s Electronic Board
Electromagnetic Waves and Heat Transfer: Sensitivites to Governing Variables in Everyday Life
Development of New Process and Product Monitoring Technologies for the Manufacturing of High Value Alloy Steels for Use in Critical Applications
Bearing and Transmission Steels Technology
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design