Due to the particularity of texture features in ancient buildings, which refers to the fact that these features have a high historical and artistic value, it is of great significance to identify and count them. However, the complexity and large number of textures are a big challenge for the artificial identification statistics. In order to overcome these challenges, this paper proposes an approach that uses smartphones to achieve a real-time detection of ancient buildings’ features. The training process is based on SSD-Mobilenet, which is a kind of Convolutional Neural Network (CNN). The results show that this method shows well performance in reality and can indeed detect different ancient building features in real time.
Volume Subject Area:
Structural Health Monitoring
This content is only available via PDF.
Copyright © 2018 by ASME
You do not currently have access to this content.