Ultrasonic atomization of bulk liquids has received extensive attention in the past few decades due to the ability to produce controlled droplet sizes, a necessity for many industries such as spray coating and aerosol drug delivery. Despite the increase in attention, one novel application of this technology has been overlooked until recently, and that is the moisture removal capabilities of atomization. The first ever ultrasonic dryer, created by researchers at Oak Ridge National Lab in 2016, applies the mechanisms of atomization to mechanically remove moisture from clothing. The process utilizes the ultrasonic vibrations created by a piezoelectric transducer in direct contact with a wet fabric to rupture the liquid-vapor boundary of the retained water. Once ruptured, smaller droplets are ejected from the bulk liquid and are actively removed from the fabric pores. The mechanisms of droplet ejection from this event are related to both capillary waves forming on the liquid surface (Capillary Wave Theory), as well as the implosion of cavitation bubbles formed from the hydraulic shocks propagating from the transducer (Cavitation Theory). In this work, we present an analytical model for predicting the moisture removal rate of a wet fabric exposed to ultrasonic vibrations, and connect the atomization events to a global variable, acceleration, in order to decouple the relationship between the transducer and applied voltage. The acceleration governing atomization is predicted using a verified numerical model. The numerical model is shown to assist in developing ultrasonic drying by means of efficiently evaluating transducer design changes.
Skip Nav Destination
ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 10–12, 2018
San Antonio, Texas, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-5194-4
PROCEEDINGS PAPER
Ultrasonic Piezoelectric Atomizers: Electromechanical Modeling and Performance Testing
Eric D. Dupuis,
Eric D. Dupuis
Virginia Polytechnic Institute and State University, Blacksburg, VA
Search for other works by this author on:
Ayyoub M. Momen,
Ayyoub M. Momen
Oak Ridge National Laboratory, Oak Ridge, TN
Search for other works by this author on:
Viral K. Patel,
Viral K. Patel
Oak Ridge National Laboratory, Oak Ridge, TN
Search for other works by this author on:
Shima Shahab
Shima Shahab
Virginia Polytechnic Institute and State University, Blacksburg, VA
Search for other works by this author on:
Eric D. Dupuis
Virginia Polytechnic Institute and State University, Blacksburg, VA
Ayyoub M. Momen
Oak Ridge National Laboratory, Oak Ridge, TN
Viral K. Patel
Oak Ridge National Laboratory, Oak Ridge, TN
Shima Shahab
Virginia Polytechnic Institute and State University, Blacksburg, VA
Paper No:
SMASIS2018-8262, V001T04A027; 7 pages
Published Online:
November 14, 2018
Citation
Dupuis, ED, Momen, AM, Patel, VK, & Shahab, S. "Ultrasonic Piezoelectric Atomizers: Electromechanical Modeling and Performance Testing." Proceedings of the ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation, and Control of Adaptive Systems; Integrated System Design and Implementation. San Antonio, Texas, USA. September 10–12, 2018. V001T04A027. ASME. https://doi.org/10.1115/SMASIS2018-8262
Download citation file:
44
Views
Related Proceedings Papers
Related Articles
Novel Experimental Study of Fabric Drying Using Direct-Contact Ultrasonic Vibration
J. Thermal Sci. Eng. Appl (April,2019)
Optimal Drug-Aerosol Delivery to Predetermined Lung Sites
J. Heat Transfer (January,2011)
A Hybrid Actuator Model for Efficient Guided Wave-Based Structural Health Monitoring Simulations
ASME J Nondestructive Evaluation (November,2024)
Related Chapters
Investigation of the Energy Shielding of Kidney Stones by Cavitation Bubble Clouds during Burst Wave Lithotripsy
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Towards Real-Time Optical Measurement of Microbubble Content in Hydrodynamic Test Facilities
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Numerical Simulation of Collapsing Vapor Bubble Clusters Close to a Rigid Wall
Proceedings of the 10th International Symposium on Cavitation (CAV2018)