Bistable structures have several applications in different areas, such as aircraft morphing wings, morphing wind turbine blades, and vibration energy harvesting, due to their unique properties. Bistable structures can be used in morphing wings and wind turbine blades since they are able to alleviate large loads by snapping from one stable position to the other one. A piezoelectric actuator can be used to bring the bistable structure back to its original position after the load is alleviated. In this paper, the transient response of a piezoelectrically actuated bistable beam is investigated experimentally for different force inputs. The goal of these experiments is to explore the ability of a commercial piezoelectric actuator to induce snap-through motion in a bistable structure. The feasibility of performing snap-through motion, and the required energy are found for different excitation force amplitudes and frequencies.

This content is only available via PDF.
You do not currently have access to this content.