This article presents the experimental validation of a Direct Adaptive Control for angular position regulation of a lightweight robotic arm. The robotic arm is single degree-of-freedom (DOF) system, actuated by two Shape Memory Alloy (SMA) wires. The proposed adaptive control is capable of adapting itself to the hysteretic behavior of SMA wires and update its behavior to deal with the changing parameters of the material over time. The closed-loop approach is tested experimentally showing its effectiveness to deal with the highly nonlinear dynamics of the SMA wires. These results are discussed and compared with a classical control approach. The updated design and hardware development and modeling of the robotic arm are shown.

This content is only available via PDF.
You do not currently have access to this content.