In the growing field of origami engineering, self-folding is of a high regard. The latter is regularly used by nature as an efficient approach for autonomous growing and reorganizing. In this work, we present a self-folding approach based on Electro-Active Polymer (EAP), especially Conductive Polymers (CP). This approach proposes lightweight, compact and energy efficient self-folding structures, as well as large angle and reversible folding. We study the behavior of a three-segment milli-structure containing two passive segments made of paper, separated by an active segment made of CP. The folding motion of the structure was modeled and experimentally validated. Furthermore, as a proof of concept, a self-folding origami cube is presented.
Volume Subject Area:
Modeling, Simulation, and Control of Adaptive Systems
This content is only available via PDF.
Copyright © 2018 by ASME
You do not currently have access to this content.