The literature of aeroelasticity includes the use of smart materials to modify the aeroelastic behavior of fixed or rotary wings. In some cases, they are employed as actuators in active control systems while in others the use of smart materials in passive control schemes is investigated. In this work a different approach is investigated. The aeroelastic behavior of a locally resonant electromechanical metastructure made from flexible substrates with piezoelectric layers connected to resonant shunt circuits is investigated. An electromechanically coupled finite element plate model is employed for predicting the electroelasatic behavior of the wing. The unsteady aerodynamic loads are obtained from the doublet lattice model. By combining the structural and aerodynamic models, the aeroelastic behavior of the metastructure over a range of airflow speeds is studied.

This content is only available via PDF.
You do not currently have access to this content.