Macro-fiber composite (MFC) piezoelectric materials are used in a variety of applications employing the converse piezo-electric effect, ranging from bioinspired actuation to vibration control. Most of the existing literature to date considered linear material behavior for geometrically linear oscillations. However, in many applications, such as bioinspired locomotion using MFCs, material and geometric nonlinearities are pronounced and linear models fail to represent and predict the governing dynamics. The predominant types of nonlinearities manifested in resonant actuation of MFC cantilevers are piezoelectric softening, geometric hardening, inertial softening, as well as internal and external dissipative effects. In the present work, we explore nonlinear actuation of MFC cantilevers and develop a mathematical framework for modeling and analysis. An in vacuo actuation scenario is considered for a broad range of voltage actuation levels to accurately identify the sources of dissipation. Several experiments are conducted for an MFC bimorph cantilever, and model simulations are compared with nonlinear experimental frequency response functions under resonant actuation. The resulting experimentally validated framework can be used for simulating the dynamics of MFCs under resonant actuation, as well as parameter identification and structural optimization for nonlinear operation regime.

This content is only available via PDF.
You do not currently have access to this content.