Creating a multi-variance human pulsation simulator is crucial for deeper understanding of human pulsation system and developing useful medical devices. Current pulsatile systems are bulky, complex, and expensive. In order to address these disadvantages, this project intends to develop a simple and cost-effective pulsatile simulator using Magneto-Rheological fluids whose flow can be controlled by magnetic fields instantly. It also intends to evaluate its effectiveness in generating various arterial blood pulsation patterns. To this end, a test setup consisting of tubing, an electromagnet, and sensors along with MR fluids was constructed. Using Pulse Width Modulation (PWM) techniques, the electromagnet produced control signals to regulate the flow motion. The output pressure changes (perceived human pulsation) were measured using a pressure sensor installed in the tubing. Using the test setup, a series of testing was performed to measure arterial pulsations by varying the duty cycles of PWM signals. The results show that the pulsatile system was capable of replicating various human pulsation waveforms.

This content is only available via PDF.
You do not currently have access to this content.